
Coherence resonance due to transient thresholds in excitable systems

Ramana Dodla and Charles J. Wilson
Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA

�Received 21 June 2010; published 6 August 2010�

Excitable systems can have more than one response threshold, but accessing each of these is only facilitated
by preferential choice of the appropriate components in the input noise. The coherence resonance phenomenon
discovered by Pikovsky and Kurths �Phys. Rev. Lett. 78, 775 �1997�� utilizes only one response threshold, thus
leaving the nature of the dynamics of a possible second threshold unspecified. Here we show using a FitzHugh-
Nagumo excitable system that the second response threshold can be reached transiently by brief pulses in the
negative noise component, leading to a coherence resonance phenomenon of its own. The resonance can occur
both as a function of input amplitude and frequency. The phenomenon is also illustrated in more realistic
Hodgkin-Huxley model equations, and analytical predictions are made using probabilistic considerations of the
input. This phenomenon attributes more complex role noise can play in excitable systems.
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I. INTRODUCTION

Noise is ubiquitous in dynamical systems �1� and has
been shown to play a constructive role in signal detection
and enhancement tasks. A number of noise-dependent dy-
namic phenomena have been discovered in the recent past
�2–6�. Excitable systems in particular exhibit a novel coher-
ence resonance phenomenon as a function of input noise
level �3,7�. Coherence resonance is displayed by a wide va-
riety of systems such as different formulations of FitzHugh-
Nagumo model �7–13�, Belousov-Zhabotinsky reaction
equations �14,15�, coupled Morris-Lecar models �16�, and
stochastic, and chaotic systems �17,18�. Experimental evi-
dence of coherence resonance phenomenon is found in opti-
cal systems �19�, electrochemical systems �20,21�, chaotic
diode lasers �22�, and semiconductor lasers �23�.

The universal premise of an excitable system is that there
is an internal threshold surface that must be crossed by the
system in response to a stimulus so that it may be excited
from its equilibrium. To the best of our knowledge, all pre-
vious studies simplified this assumption to mean that there is
a single planar threshold that must be crossed in order to
exhibit coherence resonance phenomenon; The excitable sys-
tems are usually studied in parameter regimes that are close
to a bifurcation point that signifies the birth of a periodic or
a spiking solution, and thus ensuring that the system is near
a response threshold. Though not necessary, this practice un-
derlines the current understanding of how coherence reso-
nance may appear in excitable systems.

The consequence of this assumption is that though noise
can push the system above �i.e., positive or toward� or below
�i.e., negative or away from� the equilibrium level, the com-
ponent of the noise that can take the system toward the
threshold is of central importance, and the other component
is thought to have no meaningful role to play in coherence
resonance. This is in contrast to the stochastic resonance phe-
nomenon �6� where both components of noise can play a role
in causing the resonance.

In this paper we show that both components of noise can
play a role in causing coherence resonance, in particular, the
component that takes the system farther from its threshold

can itself cause coherence resonance. This does not contra-
dict the definition of excitable system, but makes use of the
phenomenon by which transient threshold events can be in-
duced in response to brief pulses of input. Such phenomena
were studied earlier in specific models of synchrony �24–26�
and excitability �27�, but an attempt to study its consequence
to coherence resonance was never made. We show the phe-
nomenon in FitzHugh-Nagumo �FHN� model that shows the
phenomenon without decrease of the firing rate, as well as
the original model from which it is derived, the Hodgkin-
Huxley �HH� that shows the phenomenon with decrease in
the firing rate. Our result emphasizes a greater role for noise
in excitable systems. It reveals the similarity between sto-
chastic response of excitable systems and that of stochastic
resonant systems in which both components of noise can
play active role in the underlying mechanisms. The reason
why this mechanism was not recognized earlier is also clear:
it uses a transient threshold mechanism for noise that lowers
the equilibrium away from threshold, and the strength of
input for eliciting a response for negative input is usually
larger than that required for a positive input.

II. TWO-THRESHOLD SYSTEM

We consider the FitzHugh-Nagumo �FHN� equations
�7,28� in the following formulation.

�ẋ = x − x3 − y + Iapp + ��t� ,

ẏ = �x − y , �1�

where �=0.01, and �=1.0. ��t� is the noise term. In the
absence of noise, and for large �, rest state ��x� ,y��= �f , f�
where f = Iapp

1/3 � is stable for Iapp�−I� or Iapp� I�, where
I�=1 /33/2. We set Iapp=−0.2 such that the component of the
noise ��t��0 would take the membrane closer to the bifur-
cation point, and the other component ��t��0 would take it
away from it.

Model Eqs. �1� are excitable. A positive step of steady
input current �Fig. 1�a�� can result in periodic oscillations of
spikes with a nonzero frequency because the system is

PHYSICAL REVIEW E 82, 021105 �2010�

1539-3755/2010/82�2�/021105�5� ©2010 The American Physical Society021105-1

http://dx.doi.org/10.1103/PhysRevLett.78.775
http://dx.doi.org/10.1103/PhysRevE.82.021105


pushed past its subcritical Hopf bifurcation point into the
periodic regime. A negative step of current with the same
amplitude evokes another steady state and no spike response
�Fig. 1�b�� because no bifurcation point is crossed in this
regime, and in fact the system is pushed farther from the
bifurcation point. But reducing the negative pulse width to
last only a brief period of time, a spike response may be
elicited �Fig. 1�c��. This behavior is also termed postinhibi-
tory rebound or anodal break excitation. Variations of this
behavior include eliciting more than one spike for a brief
negative pulse, or a response at the cessation of the negative
pulse of even longer duration. In any of these cases, a con-
tinuous train of spikes is never elicited. And evoking a re-
sponse is principally due to a reduction of spike threshold
caused by the negative input, and the subsequent recovery of
the x variable past the lowered threshold. The response how-
ever depends on the amplitude and duration of the negative
stimulus. At a fixed pulse duration, a spike can be elicited
with either positive or negative current if the amplitude is
increased beyond a threshold level. The thresholds are not
identical for positive and negative inputs �Fig. 1�d��, making
it very likely for the negative threshold spikes that need
larger input strength to be hidden from observation when
noise of smaller amplitude is used.

Noise with sufficient amplitude can thus induce spike re-
sponses for both positive component in the noise, and the
negative component as described above. The effect of nega-
tive component may be masked because of the offsetting
effect of the positive component, or because of continuous
barrage of negative inputs which again yield no response �the
effect is similar to Fig. 1�b��. But discrete inputs, if win-
dowed appropriately, could summate to result in a super-
threshold stimulus resulting in a spike. To have full control
over the positive and the negative components of the noise,
we set � to a Poisson arrival train with positive and negative
deflections,

��t� = �
i=1

Np

Ipg�t − ti� − �
j=1

Nn

Ing�t − tj� , �2�

where ti and tj are two independent Poisson random
arrival times with rate �, and Np and Nn are the number of

such arrivals during the entire integration time window.
g�t�= t /�	e1−t/�
�t� is an alpha function pulse that essen-
tially acts like a very short impulse at the arrival of each
Poisson input with a time constant � �=0.005�. Ip and In are,
respectively, the strengths of positive and negative stimuli.

III. COHERENCE RESONANCE

A regular firing pattern �as the response in Fig. 1�a��
would have no variability among its spike times, and the
coefficient of variation �R� of its spike times is zero. A ran-
dom spike train pattern with the spike times determined by a
Poisson process will have a R of unity. Setting Ip= In and
increasing the amplitude would take the model from an ir-
regular firing pattern �R of 1� through a region of increased
coherence �i.e., decreased R� and finally to an incoherent
firing pattern at strong amplitude �Fig. 2�a��. This is the
original coherence resonance result reported by Pikovsky
and Kurths �7�. Turning off the negative input pulses, and
retaining only the positive input pulses, altered the profile of
the resonance curve very little. Particularly, the maximum
coherence attained �i.e., lowest R� is not altered significantly.
Thus the negative pulses have slightly irregularizing effect at
smaller amplitudes �by lowering the R�, and regularizing ef-
fect at larger amplitudes.

But retaining the negative pulses alone produced a sepa-
rate coherence resonance curve of its own with maximum
coherence at a different amplitude level. Resonance phenom-
ena can also be seen as a function of input frequency of the
negative input �Fig. 2�b�� with the maximum coherence and
its position dependent on the amplitude of the input. The
increase in coherence is accompanied by an increase in the
firing rate of the model, and the position of the maximum
coherence is dependent on the quasithreshold offered by the
refractory period of the model �3�. Such is still the case in the
FHN model under the presence of pure negative inputs. But
in models where the quasithreshold is stiffer �requiring stron-
ger input�, the recovery of the incoherence in the resonance
curve is dominated by the reduction of the firing rate. The
maximum coherence occurs when the firing rate is maxi-
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FIG. 1. �Color online� Demonstration of tran-
sient threshold and asymmetry in excitability. Re-
sponse of Eqs. �1� to a step of positive �a� and
negative �b� steady applied currents, and to a 0.1
ms brief pulse of negative current of amplitude
0.1 �c�. �d� The maximum deflection away from
equilibrium caused by a single brief �alpha func-
tion� stimulus is plotted as a function of the
strength of the stimulus. Increasing the strength
of Ip or In beyond the indicated dots elicits a
spike response in either case.
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mum. The Hodgkin-Huxley model �30� offers such a mecha-
nism under the effect of random but pure negative or inhibi-
tory input �Fig. 3�. We now provide a probabilistic
explanation for the resonant curve profile.

IV. ANALYTICAL ESTIMATE

If each arriving inhibitory input evokes a rebound spike,
then the output interspike interval density follows the input
interarrival density. Since the input is Poisson and the arriv-
als are independent, the waiting time for any arrival follow-
ing any given pattern of arrivals will also follow exponential
distribution. So if we disregard the input arrivals within the
refractory period, tR, then the interspike interval density is
expected to be

f�t� = �e−��t−tR�H�t − tR� ,

where H is the Heaviside function, and � is the rate of Pois-
son arrivals. From the density distribution function, we can

compute the mean and variance of the waiting times,

�t� =
1

�
+ tR,

�t2� − �t�2 = 1/�2.

Hence, the coefficient of variation is

R =
1

1 + �tR
.

This is the curve A1 shown in Fig. 3. From this formula we
clearly see that the refractory period is crucial in causing the
R to decrease from unity, similar to the coherence resonance
mechanism that occurs for excitatory events �7�. In the limit
of tR→0, the output statistics follow that of the input, and
the R becomes unity.

As the input strength In is decreased �see the curve for
In=0.3 in Fig. 3�, one needs more than one input conduc-
tance to cooperatively summate to result in a rebound spike.
We seek a density function for the distribution of such wait-
ing times. The waiting time for an output spike is the time
for obtaining two arriving inputs in a window smaller than
tw. Let us assume that the waiting time is t, and let us split
this into time windows of width tw, and hence there are
N� t / tw number of windows. Each window is allowed to
have at most one input. So the combined probability that
there is no event �of two inputs in any given window tw� is

P�N�0,t� = 0� = �e−�tw + ��tw�1e−�tw�t/tw = e−�t�1 + �tw�t/tw.

Hence, the probability function is

F = 1 − P�N�0,t� = 0� = 1 − e−�t�1 + �tw�t/tw.

The probability density is
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FIG. 2. �Color online� Coherence resonance due to brief nega-
tive inputs shown by Eqs. �1� as a function of strength and fre-
quency. �a� Coefficient of variation �R� of interspike intervals as a
function of the alpha function input amplitude when only negative
input �In�, positive input �Ip�, or both negative and positive inputs
�Ip and In� are present. The input frequency of each input is 10 kHz.
�b� R as a function of negative input frequency at two values of
input strength. A fourth-order Runge-Kutta algorithm with a time
step of 0.001 ms and �=0.01 ms is used. Averaging was done over
100 realizations with each integration lasting 1 s duration. The
length the error bars �shown at selected parameters� is twice the
standard deviation across the realizations.
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FIG. 3. �Color online� Computational and analytical profiles of
coefficient of variation �R� of interspike intervals of the four vari-
able Hodgkin-Huxley model as a function of inhibitory input rate �
at three different levels of input strength, In. A1, A2, and B are
analytical predictions. Ten realizations of 1000 s each are used to
compute the error bars �shown at selected points� whose length is
twice the standard deviation over the realizations. �=1 ms, and the
integration time step of the fourth-order Runge-Kutta was 0.002 ms.
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f =
dF

dt
= e−�t�1 + �tw�t/tw	� −

ln�1 + �tw�
tw


 .

From this the mean and the standard deviation can be de-
rived. We note that we’ll have to add tR to the value of the
mean to take into account the refractory period. We will do
this while computing R. Since our input is Poisson timed, our
statistics do not change if we had conditioned our probabili-
ties on the arrivals in the refractory period. Thus

�t� =
tw

�tw − ln�1 + �tw�
,

�t2� =
2tw

2

��tw − ln�1 + �tw��2 .

The coefficient of variation is written as

R =
��t2� − �t�2�1/2

�t� + tR
=

1

1 +
tR

tw
��tw − ln�1 + �tw��

.

The expression for R is shown in Fig. 3 as A2 for the param-
eters tR=30 ms and tw=6.14 ms. This predicts that decreas-
ing the input strength has the effect of maintaining the high
randomness among spike times for higher levels of input
rate, but R nevertheless decreases with input rate.

Now we estimate R in the high input nonlinear regime. A
number of spike evoking and suppressing mechanisms take
place in this regime. But we set out to predict the profile of R
based on simpler assumptions. In the high input regime, in-
hibition occurring in close succession keeps the membrane
hyperpolarized, and a spike results only when there is a
pause in such successive input sequence. We seek waiting
time distribution of such pauses. Our simplifying assumption
is that we do not impose any further conditions on how long
this pause must be. Such conditions may be imposed, but the
analysis will become more complicated, and it may not nec-
essarily capture all the complex processes that take place at
such input rates. We split the waiting time t into t / tw win-
dows, and require that each window should have N+1 or
more number of arrivals to prevent a rebound spike �and
keep the membrane in the hyperpolarized regime�. So, the
probability of waiting for not more than N spikes in succes-
sive windows of width tw is

P = 	1 − �
k=0

N
��tw�k

k!
e−�tw
t/tw

= 	1 −
��N + 1,�tw�

��N + 1� 
t/tw
,

where we have used the definitions of both complete and
incomplete gamma functions. The probability density func-
tion is

f =
d

dt
�1 − P� = −

1

tw
	1 −

��N + 1,�tw�
��N + 1� 
t/tw

	ln	1 −
��N + 1,�tw�

��N + 1� 
 .

The first and second moments can be evaluated from the
density function as follows:

�t� =
tw

�ln	1 −
��N + 1,�tw�

��N + 1� 
� ,

�t2� =
2tw

2

ln	1 −
��N + 1,�tw�

��N + 1� 
2 .

Then the coefficient of variation is calculated, by adding the
refractory period to the first moment, as

R =
��t2� − �t�2

�t� + tR
=

1

1 +
tR

tw
�ln	1 −

��N + 1,�tw�
��N + 1� 
� .

This curve as a function of � is plotted in Fig. 3 as B for
tw=13.5 ms and N=7. The value of N is chosen such that an
alpha function conductance with 1 ms time constant which
decays in 2 ms would not release the membrane from hyper-
polarization if the inputs are spread equally in time in tw
window. The spike latency is taken as the value of tw. The
curve B2 predicts the growth profile of R. Systematic correc-
tions to our assumptions could be made to derive more spe-
cific curves corresponding to a given In value, but it is a
daunting task.

V. CONCLUSION

We have shown that negative component in the noise �i.e.,
inhibitory input� could by itself show coherence resonance
phenomenon, thus imparting more significance to the intrin-
sic components of noise in dynamical systems. In models of
excitable systems, simplified, or conductance based neuron
models, negative or inhibitory input can be seen to play more
coherence-enhancing role just as positive input does. With an
interplay between the components of the noise, desired co-
herence may be achieved in experimental systems where in-
dependent control of the noise components is feasible.
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